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Abstract 

This article introduces mathematical equations for 

formalization of dynamic movement primitives and 

shows their use in simulation environment. Different 
parameters for generating DMPs are described and their 

effects on adequacy of generated DMPs are shown. 

Basics of impedance control and torque primitives which 

together with DMPs constitute compliant dynamic 

movement primitive are introduced. 
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1 Introduction 

 As robots become more common throughout the 

industry [5], so do jobs involving human-robot 

interaction. Additionally, robots are becoming more 

frequent in household applications, by partaking assistive 
roles. Due to these reasons, it is essential to provide 

maximum safety in collaborative and cooperative tasks. 

Increased safety will not only help with preventing 

injuries but will also help people accept robots as their 

cohabitants and/or co-workers. 

 In this project we explore safe robot control, by 

utilizing compliant dynamic movement primitives 

(CDMPs) [2] [3]. All experiments were conducted in 

simulation on a model of the Kuka LBR iiwa robot [1]. 

The main goal was to teach the robot using statistical 

generalization, to apply the appropriate torque for a given 
task, while remaining compliant. This ensures safety and 

accuracy. 

 

2 Dynamic movement primitives 

 To get a better understanding of the behaviour of a 

nonlinear system, whether it is in a field of neuroscience, 

economics, or robotics, a nonlinear dynamical model of 

that system is needed. It has become common practice to 

model them with systems of coupled nonlinear 

differential equations. Mostly, the unexpected emergent 

behaviour of nonlinear systems is investigated, however 

a goal-directed behaviour is of equal importance and is 

shown in this article. Modelling that kind of behaviour is 
rather difficult due to parameter sensitivity of these 

systems and their lack of analytical predictability. A 

generic modelling approach to generate nonlinear 

differential equations to capture an observed behaviour 

in an attractor landscape is proposed. Its manner is to start 

with set of linear differential equations and transform 

them into desired system with prescribed attractor 

dynamics, using learnable autonomic forcing term [2]. 

 

2.1 Model development 

 Basic idea of this approach is to use a well-understood 

dynamical system and modulate it with nonlinear terms 

to achieve desired behaviour. Here, we use a damped 

spring system: 

 

𝜏�̈� =  𝛼𝑧(𝛽𝑧(𝑔 − 𝑦) − �̇�) + 𝑓(𝑥, 𝒘),  (1) 
 
where 𝑦,̈ �̇�, 𝑦 are variables of acceleration, velocity 
and position which would be converted to motor 
commands by a controller (they cause nonlinearities 
in dynamics). We write it in first-order notation: 
 
𝜏�̇� =  𝛼𝑧(𝛽𝑧(𝑔 − 𝑦) − 𝑧) + 𝑓(𝑥, 𝒘)  (2) 
𝜏�̇� = 𝑧  (3) 
𝜏�̇� =  −𝛼𝑥𝑥, (4) 

 
where 𝜏 represents time constant and 𝛼𝑧, 𝛼𝑥 and 𝛽𝑧 are 

positive constants. Variable 𝑦 describes the motion of 

one degree of freedom and 𝑥 is called a phase variable 

(initially equals 1 and limits to zero in infinity). 

Equations (1) and (2) represent transformation system 

and (3) represents a canonical system (replacement of 

time component). There is also a forcing function 

𝑓(𝑥, 𝒘)  given in equation (2), which is responsible for 

system adequately following desired path. For that we 

need to define forcing term 𝑓: 

 

𝑓(𝑥) =  
∑ Ѱ𝑖(𝑥)𝑤𝑖

𝑁
𝑖=1

∑ Ѱ𝑖(𝑥)𝑁
𝑖=1

𝑥(𝑔 − 𝑦0)  (5) 

 

where: 

 

Ѱ𝑖(𝑥) = 𝑒𝑥𝑝 (−
1

2𝜎𝑖
2 (𝑥 − 𝑐𝑖)

2), (6) 

 

𝜎𝑖 and 𝑐𝑖 determine width and center of basis functions 

and 𝑦0 is the initial state at 𝑡 = 0. Parameters 𝑤𝑖 are 

weight vectors which can be adjusted using learning 

algorithms to produce complex trajectories before 

reaching the goal. 

 



 

 

Figure 1: Non-weighted Gaussian basis functions 

 

 With use of 𝑥 term in forcing function we guarantee 

that the contribution of the forcing term goes to 𝑥 ≅ 0.13 

over time. Meaning; our system can trace very complex 

paths but will eventually return to its simpler point 

attractor dynamics and converge to the target. However, 

𝑥 term does not converge linearly but exponentially 

which presents us with a problem, because basis 

functions activate according to 𝑥 term (activation of basis 

function at the start is more frequent than at the end). 

 

 

Figure 2: DMP phase 

 

 A solution is to determine variance of a basis function 

that is equal to number of basis functions divided by the 

centre of that basis function. Term (𝑔 − 𝑦0) in forcing 

function is responsible for scaling of computed 
trajectory. It scales the activation of basis functions 

relative to the distance to the target. It compensates if 

weights are too weak (new goal moved further away) or 

too strong (new goal closer than original one). Like 

spatial also temporal scaling is possible, meaning, ability 

to perform same path at different speeds, which is made 

possible with inclusion of the term 𝜏. If 𝜏 is set between 

0 and 1, the system will perform a movement slower and 

if 𝜏 is set higher than 1 the movement will be performed 

faster [3]. 

With described equations it is possible for a system to 

follow a desired path with temporal and spatial 

scalability, however, it is desired for the system to be able 

to learn a demonstrated path. 

 Once obtained, desired path is then differentiated 

twice to get acceleration trajectory (7), from which the 

effect of the base point attractor is removed (8): 

 

 �̈� =  𝛼𝑦(𝛽𝑦(𝑔 − 𝑦) − �̇�)  (7) 

𝒇𝒅 = 𝒚�̈� − 𝛼𝑦(𝛽𝑦(𝑔 − 𝒚) − �̇�)     (8) 

 

 With the use of locally weighted regression the 

weights over basis functions are calculated, so that the 

forcing term matches the desired trajectory 𝒇𝒅: 

 

𝑤𝑖 =  
𝑠𝑇Ѱ𝑖𝒇𝑑

𝑠𝑇Ѱ𝑖𝑠
  (9) 

 

where: 
 

𝑠 =  [
𝑥𝑡0(𝑔 − 𝑦0)

⋮
𝑥𝑡𝑁(𝑔 − 𝑦0)

] , Ѱ𝑖 =  [
Ѱ𝑖(𝑡0) ⋯ 0

0 ⋱ 0
0 ⋯ Ѱ𝑖(𝑡𝑁)

]  

 
 The path has been learned, however, the ability to 

satisfactory replicate it using DMPs is dependent on its 

complexity and number of basis functions used. From 

that statement we can conclude, that highly nonlinear 

parts of the path are more densely placed and the basis 

functions being used are narrower; the more linear the 

area of the path is, the fewer and wider basis functions 

being used are. Method that can determine the 

complexity of the path and distribution of basis functions 

is described in another article [4]. 

 

3 Impedance control 

 Compliancy is achieved, by utilizing impedance 

control. It allows us to determine how the robot reacts 

upon external forces. Compared to a PD regulator, the 

impedance control offers compensation for dynamic 

nonlinear properties of a joint, which allow each joint to 

act as in ideal conditions, with second-order dynamics. 

 

3.1 Mass-spring-damper model 

𝐹(𝑡) = 𝑚�̈�(𝑡) + 𝑏�̇�(𝑡) + 𝑘𝑥(𝑡) (10) 

 

 Mechanical impedance is described by a relatively 

simple mass-spring-damper model (10) [6], which is a 

widely used second-order model, that attempts to 

describe how an object reacts upon an external force. The 

�̈�, �̇�, 𝑥 variables represent acceleration, velocity, and 

displacement that are the result of an external force being 

applied. Parameters 𝑚, 𝑏, 𝑘 denote the mass, damping 

coefficient, and stiffness, respectively. 



 From a robotics standpoint, the mass represents a 

mass of a joint, the stiffness represents how “elastic” the 

joint is, while the damping coefficient controls the 
resistance of a joint. By lowering the stiffness and 

damping, we achieve compliancy. The more compliant 

the system, the “softer” and safer the robot is and vice 

versa. However, with more compliant systems, the 

response is also slower. 

 

3.2 Position-based impedance regulation 

 

Figure 3: Position-control impedance scheme [6] 

 

 The impedance model acts as an input for the inverse 

kinematics and dynamics [6]. It accepts the requested 

motion from a trajectory and the corresponding force. 

Inverse kinematics and dynamics (Figure 3) then 

calculate the appropriate torques, which are applied to the 

joint actuators – usually servo motors. Force is then 

received from the environment through the force sensors, 

located on the robot, which then feed it back into the 
impedance model, completing the loop. 

 

4 Encoding a trajectory into DMPs 

 To familiarize ourselves with DMPs, we were tasked 

with recording and encoding a trajectory into DMPs and 

then back. First, we enabled low stiffness to be able to 

move the robot by hand. Then we moved it to make a 

trajectory and recorded rotations in joints. That data was 

used in the encoding process. We also had to specify 

number of basis functions to be used. Below (figure 4), 

original and DMP-generated (we used ten basis 

functions) trajectories for a single joint are shown.  

 

 

Figure 4: DMP transformation of a single joint 

 

5 Transformational error of DMPs 

 At its core, a DMP transformation is a lossy or an 

irreversible compression. It uses inexact approximation 

to achieve a high compression ratio. Therefore, once the 

motion is decoded from DMPs, it contains an error from 

its original form. 

 

 

Figure 5: Transformation corrected with dynamic time warping 

 To properly calculate the error, we utilized dynamic 

time warping, to remove any phase shift or scaling. The 

error is calculated as a root mean square of the original 

and the decoded path. 

 

 

Figure 6: Transformational error, based on the number of basis 
functions 

 As described, the higher number of basis functions we 

use, the better the approximation is. To see just how 

much the number of basis functions affects the decoding 

error, we compared the error at different numbers of basis 
functions (Figure 1). From the results, we can gather that 

after around 30 basis functions, we start getting 

diminishing returns, based on the computation time. 

 

6 Torque primitives 

 While very similar to DMPs, torque primitives (TPs) 

represent an encoded torque, instead of movement. The 

main difference is in that the movement is represented as 

second order system and then encoded with quadratic 

regression, whereas torque primitives are directly 



 

encoded with quadratic regression. The initial idea 

behind using TPs, was to utilize them in statistical 

generalization, to teach a robot the necessary torques for 

a given load. Their usage is necessary, so the trajectory is 

described with as little information as possible – which 

accelerates learning. 

 

 

Figure 7: Kuka LBR iiwa [1] simulation with an attached 1 kg 

load 

 
 Ordinarily, heavier loads on compliant systems 

require higher torques, for the end-effector to follow the 

trajectory properly. Producing only required torques 

would insure, that the trajectory would be followed 

accurately, while maintaining optimal safety; meaning, if 

an impact would occur, it would be minimal. 

 

 

Figure 8: Torques at unloaded and different loaded conditions 

 

 To teach the robot, to apply appropriate torques on 

different loads, we must first measure torques in 

unloaded conditions, as well as in different loaded 

conditions. Collected data will serve as a training set for 

statistical generalization. 

 

 

7 Conclusion 

 Due to the recent COVID-19 pandemic, we were 

forced to move our physical exercises to a simulation. 

This caused quite a few issues while developing the 

project. The issues impacted our progress considerably, 

which caused a noticeable lag and a lot of spent time on 
debugging. Because of this reason, we did not quite reach 

the goal of applying appropriate torque reinforcement 

learning to the system. Nevertheless, we were quite close, 

as we managed to correctly encode torques as torque 

primitives and therefore left out only the statistical 

generalization part. 

 If we were to have additional time for working on this 

project, we would firstly implement the beforementioned 

statistical generalization. Additionally, we would 

compare it against another learning strategy, such as 

reinforcement learning [7], to determine the most 

efficient learning method. 
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