
Compliant dynamic movement primitives

Jaka Kovše, Adam Hrastnik

Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, 1000 Ljubljana

E- mail: jk4684@student.uni-lj.si

E- mail: ah1223@student.uni-lj.si

Abstract

This article introduces mathematical equations for

formalization of dynamic movement primitives and

shows their use in simulation environment. Different
parameters for generating DMPs are described and their

effects on adequacy of generated DMPs are shown.

Basics of impedance control and torque primitives which

together with DMPs constitute compliant dynamic

movement primitive are introduced.

Keywords: CDMP, robot, impedance control, compliant

1 Introduction

 As robots become more common throughout the

industry [5], so do jobs involving human-robot

interaction. Additionally, robots are becoming more

frequent in household applications, by partaking assistive
roles. Due to these reasons, it is essential to provide

maximum safety in collaborative and cooperative tasks.

Increased safety will not only help with preventing

injuries but will also help people accept robots as their

cohabitants and/or co-workers.

 In this project we explore safe robot control, by

utilizing compliant dynamic movement primitives

(CDMPs) [2] [3]. All experiments were conducted in

simulation on a model of the Kuka LBR iiwa robot [1].

The main goal was to teach the robot using statistical

generalization, to apply the appropriate torque for a given
task, while remaining compliant. This ensures safety and

accuracy.

2 Dynamic movement primitives

 To get a better understanding of the behaviour of a

nonlinear system, whether it is in a field of neuroscience,

economics, or robotics, a nonlinear dynamical model of

that system is needed. It has become common practice to

model them with systems of coupled nonlinear

differential equations. Mostly, the unexpected emergent

behaviour of nonlinear systems is investigated, however

a goal-directed behaviour is of equal importance and is

shown in this article. Modelling that kind of behaviour is
rather difficult due to parameter sensitivity of these

systems and their lack of analytical predictability. A

generic modelling approach to generate nonlinear

differential equations to capture an observed behaviour

in an attractor landscape is proposed. Its manner is to start

with set of linear differential equations and transform

them into desired system with prescribed attractor

dynamics, using learnable autonomic forcing term [2].

2.1 Model development

 Basic idea of this approach is to use a well-understood

dynamical system and modulate it with nonlinear terms

to achieve desired behaviour. Here, we use a damped

spring system:

𝜏�̈� = 𝛼𝑧(𝛽𝑧(𝑔 − 𝑦) − �̇�) + 𝑓(𝑥, 𝒘), (1)

where 𝑦,̈ �̇�, 𝑦 are variables of acceleration, velocity
and position which would be converted to motor
commands by a controller (they cause nonlinearities
in dynamics). We write it in first-order notation:

𝜏�̇� = 𝛼𝑧(𝛽𝑧(𝑔 − 𝑦) − 𝑧) + 𝑓(𝑥, 𝒘) (2)
𝜏�̇� = 𝑧 (3)
𝜏�̇� = −𝛼𝑥𝑥, (4)

where 𝜏 represents time constant and 𝛼𝑧, 𝛼𝑥 and 𝛽𝑧 are

positive constants. Variable 𝑦 describes the motion of

one degree of freedom and 𝑥 is called a phase variable

(initially equals 1 and limits to zero in infinity).

Equations (1) and (2) represent transformation system

and (3) represents a canonical system (replacement of

time component). There is also a forcing function

𝑓(𝑥, 𝒘) given in equation (2), which is responsible for

system adequately following desired path. For that we

need to define forcing term 𝑓:

𝑓(𝑥) =
∑ Ѱ𝑖(𝑥)𝑤𝑖

𝑁
𝑖=1

∑ Ѱ𝑖(𝑥)𝑁
𝑖=1

𝑥(𝑔 − 𝑦0) (5)

where:

Ѱ𝑖(𝑥) = 𝑒𝑥𝑝 (−
1

2𝜎𝑖
2 (𝑥 − 𝑐𝑖)

2), (6)

𝜎𝑖 and 𝑐𝑖 determine width and center of basis functions

and 𝑦0 is the initial state at 𝑡 = 0. Parameters 𝑤𝑖 are

weight vectors which can be adjusted using learning

algorithms to produce complex trajectories before

reaching the goal.

Figure 1: Non-weighted Gaussian basis functions

 With use of 𝑥 term in forcing function we guarantee

that the contribution of the forcing term goes to 𝑥 ≅ 0.13

over time. Meaning; our system can trace very complex

paths but will eventually return to its simpler point

attractor dynamics and converge to the target. However,

𝑥 term does not converge linearly but exponentially

which presents us with a problem, because basis

functions activate according to 𝑥 term (activation of basis

function at the start is more frequent than at the end).

Figure 2: DMP phase

 A solution is to determine variance of a basis function

that is equal to number of basis functions divided by the

centre of that basis function. Term (𝑔 − 𝑦0) in forcing

function is responsible for scaling of computed
trajectory. It scales the activation of basis functions

relative to the distance to the target. It compensates if

weights are too weak (new goal moved further away) or

too strong (new goal closer than original one). Like

spatial also temporal scaling is possible, meaning, ability

to perform same path at different speeds, which is made

possible with inclusion of the term 𝜏. If 𝜏 is set between

0 and 1, the system will perform a movement slower and

if 𝜏 is set higher than 1 the movement will be performed

faster [3].

With described equations it is possible for a system to

follow a desired path with temporal and spatial

scalability, however, it is desired for the system to be able

to learn a demonstrated path.

 Once obtained, desired path is then differentiated

twice to get acceleration trajectory (7), from which the

effect of the base point attractor is removed (8):

 �̈� = 𝛼𝑦(𝛽𝑦(𝑔 − 𝑦) − �̇�) (7)

𝒇𝒅 = 𝒚�̈� − 𝛼𝑦(𝛽𝑦(𝑔 − 𝒚) − �̇�) (8)

 With the use of locally weighted regression the

weights over basis functions are calculated, so that the

forcing term matches the desired trajectory 𝒇𝒅:

𝑤𝑖 =
𝑠𝑇Ѱ𝑖𝒇𝑑

𝑠𝑇Ѱ𝑖𝑠
 (9)

where:

𝑠 = [
𝑥𝑡0(𝑔 − 𝑦0)

⋮
𝑥𝑡𝑁(𝑔 − 𝑦0)

] , Ѱ𝑖 = [
Ѱ𝑖(𝑡0) ⋯ 0

0 ⋱ 0
0 ⋯ Ѱ𝑖(𝑡𝑁)

]

 The path has been learned, however, the ability to

satisfactory replicate it using DMPs is dependent on its

complexity and number of basis functions used. From

that statement we can conclude, that highly nonlinear

parts of the path are more densely placed and the basis

functions being used are narrower; the more linear the

area of the path is, the fewer and wider basis functions

being used are. Method that can determine the

complexity of the path and distribution of basis functions

is described in another article [4].

3 Impedance control

 Compliancy is achieved, by utilizing impedance

control. It allows us to determine how the robot reacts

upon external forces. Compared to a PD regulator, the

impedance control offers compensation for dynamic

nonlinear properties of a joint, which allow each joint to

act as in ideal conditions, with second-order dynamics.

3.1 Mass-spring-damper model

𝐹(𝑡) = 𝑚�̈�(𝑡) + 𝑏�̇�(𝑡) + 𝑘𝑥(𝑡) (10)

 Mechanical impedance is described by a relatively

simple mass-spring-damper model (10) [6], which is a

widely used second-order model, that attempts to

describe how an object reacts upon an external force. The

�̈�, �̇�, 𝑥 variables represent acceleration, velocity, and

displacement that are the result of an external force being

applied. Parameters 𝑚, 𝑏, 𝑘 denote the mass, damping

coefficient, and stiffness, respectively.

 From a robotics standpoint, the mass represents a

mass of a joint, the stiffness represents how “elastic” the

joint is, while the damping coefficient controls the
resistance of a joint. By lowering the stiffness and

damping, we achieve compliancy. The more compliant

the system, the “softer” and safer the robot is and vice

versa. However, with more compliant systems, the

response is also slower.

3.2 Position-based impedance regulation

Figure 3: Position-control impedance scheme [6]

 The impedance model acts as an input for the inverse

kinematics and dynamics [6]. It accepts the requested

motion from a trajectory and the corresponding force.

Inverse kinematics and dynamics (Figure 3) then

calculate the appropriate torques, which are applied to the

joint actuators – usually servo motors. Force is then

received from the environment through the force sensors,

located on the robot, which then feed it back into the
impedance model, completing the loop.

4 Encoding a trajectory into DMPs

 To familiarize ourselves with DMPs, we were tasked

with recording and encoding a trajectory into DMPs and

then back. First, we enabled low stiffness to be able to

move the robot by hand. Then we moved it to make a

trajectory and recorded rotations in joints. That data was

used in the encoding process. We also had to specify

number of basis functions to be used. Below (figure 4),

original and DMP-generated (we used ten basis

functions) trajectories for a single joint are shown.

Figure 4: DMP transformation of a single joint

5 Transformational error of DMPs

 At its core, a DMP transformation is a lossy or an

irreversible compression. It uses inexact approximation

to achieve a high compression ratio. Therefore, once the

motion is decoded from DMPs, it contains an error from

its original form.

Figure 5: Transformation corrected with dynamic time warping

 To properly calculate the error, we utilized dynamic

time warping, to remove any phase shift or scaling. The

error is calculated as a root mean square of the original

and the decoded path.

Figure 6: Transformational error, based on the number of basis
functions

 As described, the higher number of basis functions we

use, the better the approximation is. To see just how

much the number of basis functions affects the decoding

error, we compared the error at different numbers of basis
functions (Figure 1). From the results, we can gather that

after around 30 basis functions, we start getting

diminishing returns, based on the computation time.

6 Torque primitives

 While very similar to DMPs, torque primitives (TPs)

represent an encoded torque, instead of movement. The

main difference is in that the movement is represented as

second order system and then encoded with quadratic

regression, whereas torque primitives are directly

encoded with quadratic regression. The initial idea

behind using TPs, was to utilize them in statistical

generalization, to teach a robot the necessary torques for

a given load. Their usage is necessary, so the trajectory is

described with as little information as possible – which

accelerates learning.

Figure 7: Kuka LBR iiwa [1] simulation with an attached 1 kg

load

 Ordinarily, heavier loads on compliant systems

require higher torques, for the end-effector to follow the

trajectory properly. Producing only required torques

would insure, that the trajectory would be followed

accurately, while maintaining optimal safety; meaning, if

an impact would occur, it would be minimal.

Figure 8: Torques at unloaded and different loaded conditions

 To teach the robot, to apply appropriate torques on

different loads, we must first measure torques in

unloaded conditions, as well as in different loaded

conditions. Collected data will serve as a training set for

statistical generalization.

7 Conclusion

 Due to the recent COVID-19 pandemic, we were

forced to move our physical exercises to a simulation.

This caused quite a few issues while developing the

project. The issues impacted our progress considerably,

which caused a noticeable lag and a lot of spent time on
debugging. Because of this reason, we did not quite reach

the goal of applying appropriate torque reinforcement

learning to the system. Nevertheless, we were quite close,

as we managed to correctly encode torques as torque

primitives and therefore left out only the statistical

generalization part.

 If we were to have additional time for working on this

project, we would firstly implement the beforementioned

statistical generalization. Additionally, we would

compare it against another learning strategy, such as

reinforcement learning [7], to determine the most

efficient learning method.

References

[1] Kuka LBR iiwa,

https://www.kuka.com/en-de/products/robot-
systems/industrial-robots/lbr-iiwa, accessed
16.5.2020

[2] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor,

S. Schaal: Dynamical Movement Primitives:
Learning Attractor Models for Motor Behaviors,
Massachusetts Institute of Technology, 2013

[3] Studywolf, Dynamic motion primitives the basics,

https://studywolf.wordpress.com/2013/11/16/dynam
ic-movement-primitives-part-1-the-basics/, accessed
16.5.2020

[4] Stefan Schaal: Dynamic Movement Primitives- A
Framework for Motor Control in Humans and

Humanoid Robotics, University of South Carolina,
Los Angeles, 2002.

[5] International federation of Robotics press conference,
2016

[6] Chao Li, Zhi Zhang, Guihua Xia, Xinru Xie and
Qidan Zhu: Efficient Force Control Learning System
for Industrial Robots Based on Variable Impedance
Control, 2018

[7] P. Kormushev, S. Calinon and D. G. Caldwell,
"Robot motor skill coordination with EM-based
Reinforcement Learning", 2010 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, Taipei, 2010

